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Abstract

Phase measurements on a single-mode
radiation field are examined from a
system-theoretic viewpoint. Quantum
estimation theory is used to establish
the primacy of the Susskind-Glogower
(SG) phase operator; its phase eigen-
kets generate the probability operator
measure (POM) for maximum-likelihood
phase estimation. A commuting observ-
ables description for the SG-POM on a
signalxapparatus state space is derived.
It is analogous to the signal-band x image-
band formulation for optical heterodyne
detection. Because heterodyning realizes
the annihilation operator POM, this anal-
ogy may help realize the SG-POM. The
wave function representation associated
with the SG-POM is then used to prove
the duality between the phase measure-
ment and the number operator measure-
ment, from which a number-phase uncer-
tainty principle is obtained, via Fourier
theory, without recourse to linearization.
Fourier theory is also employed to estab-
lish the principle of number-ket causal-
ity, leading to a Paley-Wiener condi-
tion that must be satisfied by the phase-
measurement probability density function
(PDF) for a single-mode field in an ar-
b/trary quantum state. Finally, a two-
mode phase measurement is shown to af-
ford phase-conjugate quantum communi-
cation at zero error probability with finite
average photon number. Application of
this construct to interferometric precision
measurements is briefly discussed.

1. INTRODUCTION

A classical single-mode radiation field
is characterized by a spatial-mode pattern

_'(F), an oscillation frequency w in rad/s,
and a c-number phasor a. The latter spec-
ifies both the energy and the initial phase

shift of the field--we can take H = Nhw

to be the mode energy, and ¢ to be the
mode phase, where

a = v e*, (1)

is the polar decomposition of a. When
the single-mode classical field is quantized,
its mode pattern and frequency are un-
changed, but a is replaced by the anni-
hilation operator 5. The phase problem,
for this single-mode quantum field, has
long been taken to mean finding a satis-
factory quantum version of Eq. 1.1 How-
ever, owing to the noncommutative nature
of the quantum theory's operator algebra,
no such decomposition exists, i.e., there is
no observable ¢ such that 2

a = (2)

One may quibble about the order of the

amplitude and phase terms on the right-
side of Eq. 2, or prefer the use of N +

] = _.ht in lieu of fr = hts, etc., but the
essential isspe is the nonexistence of the
observable ¢.

Until recently the Susskind-Glogower
(SG) phase operator, 2

ei_'_ = (55¢)-1/25, (3)

has seemed to provide the best quantum
description of phase. The SG operator is
non-Hermitian, and its quadraturcs,

cos(C) - Re(e/4'), and (4)

sin(C) _ Im(ei¢), (5)

are noncon_nuting observables which .fail
certain reasonable conditions that the co-

sine and sine of a phase should meet. For
example, it turns out that

_--- 2 ------ 2

<¢lco_(¢) 10> + (¢[sin(¢) [O) < 1, (6)
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unless the state I_) is orthogonal to the
vacuum, 10). On the other hand, the SG-
based commutator

does lead to the oft-employed number
phase uncertainty principle, ANAO >
1/2, under a high-mean-field linearization.

Lately, there has been intense renewed
interest in the quantum phase problem. In
what follows we will review some of the
recent quantum phase work of Shapiro,
Shepard, and Wong, a' 4 and present some
new results. Because the effort of Shapiro
et al. originates from a quantum esti-
mation theory viewpoint, that tack will
taken here as well. Because the formal-
ism of Shapiro et al. relies on the prob-
ability operator measure (POM) descrip-
tion of quantum measurement--a general-
ization of observables not well known in

the physics literature---we will begin with
a brief tutorial on POM's.

2. POM REVIEW

The textbook approach to quantum
measurement is through observables, s For
example, consider the quadrature compo-
nents of the single-mode field's annihila-
tion operator, i.e.,

al = Re(a), and (8)
a2 -- Ira(a). (9)

These are continuous-spectrum observ-
able,. In other words, they are Hermitian
operators

a_=_j, for j=1,2, (10)

with complete orthonormal (CON) eigen-
kets,

aj1_j)j= _j1_>j,
for -00 < aj < o%(11)

j(a;[aj)j = 6(a; -aj), (12)

/2i = _j I_j)jj(_jl,(13)

where ] is the identity operator, and 6(.)
is the Dirac delta function.

Measurement of a quadrature operator,
when the system is in state ]¢), gives a
continuous-valued, classical random vari-
able with PDF

p(aj [ [¢))_ [j(aj[¢)]2,

for -co < aj < co, j = 1,2. (14)

For this classical probability density to be
correct, for all possible ]0), it must satisfy

and

p(_ I I_>) ->o,
for -co < aj < co,j = 1, 2, (15)

/?o ,_j I I¢) ) =P( _j 1,

forj = 1,2. (16)

These conditions are ensured by Eq. 13,
which leads to the familiar quadrature
representations---essentially the position
and momentum wave functions--given by

/2
oo

f?oo dal= ¢(al)tal)l, (17)

and

/2l%b> = ][%b}= d_21a2>22(a21¢>
oo

£= da2 _(a2)la2)2, (lS)
oo

with the obvious identifications for ¢(al)
and _(a2). Of course, the quadratures are
noncommuting observables,

i- (19)[al, a2] = _i,

so they cannot be measured simultane-
ously .5

The preceding review demonstrates that
the full specification of observables, i.e.,
Hermitian operators with CON eigenkets,
is not needed to produce a consistent
statistical characterization of a quantum
measurement. For an arbitrary quan-
tum state, a resolution of the identity--an
outer-product sum like Eel. 13--generates
a proper classical-probability description
of a quantum measurement. This is the
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essenceof the POMconcept.Our princi-
pal purposefor introducingPOM's is to
accommodatemeasurementsthat are not

observables on the state space, 7_, of the
h-mode. The best way to introduce such
nonobservable POM's is through an exam-
ple. It is well known that the annihila-
tion operator, h, is not an observable---it
is non-Hermitian,

a' # a. (20)

Furthermore, its real and imaginary
parts, al and a2, are noncommuting
observables--fi cannot be measured in the
usual textbook sense. However, the anni-
hilation operator does have eigenkets--the
coherent states, 6

5[a) = alto),

for a E C, (21)

where C is the complex plane. These states
are not orthonormal, i.e.,

exp@l[ '[2 - 21 [2 + ,(22)

which is a consequence of the nonvanishing
commutator

implied by Eq. 19. Nevertheless, the
coherent states are complete, in fact

, overcomplete--they form a resolution of
the identity

i =  ecd=a I )(ol,

hold, for all 1¢).

The preceding POM has long been
known.7, s, 9 It represents a measure-
ment, in the POM sense, of the annihi-
lation operator _: the h-eigenkets gener-
ate the measurement statistics, and the _-
eigenvalues are the resulting observation
values. This parallels the usual observ-
ables description: the observable's eigen-
kets generate the measurement statistics,
and the associated eigenvalues are the ob-
servation values, cf. Eq. 14.

The POM formulation is not in conflict
with the conventional dictum that only ob-
servables can be measured. Any nonob-
servable POM on 7"/can be represented as
a collection of commuting observables on
some larger state space which describes
the original system interacting with an
appropriate apparatus. 7 The most famil-
iar example of this genre is optical het-
erodyne detection of a single-mode signal
field, which provides both a commuting-
observables description and a physical re-
alization for the _-POM.

In optical heterodyne detection, 8, 9, 10
a signal field of frequency v is mixed with
a strong local-oscillator (LO) field of fre-
quency v - VIE on the surface of a pho-

(23) todetector. With a unity-quantum ef-
ficiency detector, and two-channel lock-
in amplification at the intermediate fre-
quency (viE), this arrangement produces
a complex-valued, classical random vari-
able, y, whose measurement statistics are

i.dentical to those of the operator 9

(24)

which defines the _POM. The outcome of

the _-POM is a complex-valued, continu-
ous classical random variable with PDF

= Zl<alW)l2,

for a EC,

I I,P))

when the field state is I¢). Because of
Eq. 24, it follows that

and

P(all¢))->0, foraEC, (26)

d2ap( a l l¢) ) = 1,

Here 5j and Ij, forj = S, I, are the annihi-
lation and identity operators for the signal
mode (frequency u), and the image mode
(frequency t_- 2UiF), respectively. Both
of these modes beat with the LO to pro-

(25) duce IF waveforms, just as is the case in
classical superheterodyne radio reception.
It is easily verified that the real and imagi-
nary parts of Z)are commuting observables
on the joint state space, 7-/s ® "HI, and
so are simultaneously measurable in the
usual sense. Ordinarily, only the signal
mode carries information, i.e., the image

(27) mode is unexcited. Under these circum-
stances, the PDF for the observed y-value
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reduces to 8, 9

p(u I I¢)s ) 1 is(ylW)sl='

for y E C, (29)

where [Y)s is the signal-mode coherent
state with eigenvalue y, and [¢)s is an
arbitrary signal-mode state. Comparison
of Eqs. 29 and 25 completes the demon-
stration that heterodyning--a pair of com-
muting observables on an extended state
space with an unexcited image mode--
realizes the 5s-POM.

3. PHASE ESTIMATION

Rather than seeking a quantum for-
malism for phase by pursuing a quantum
version of Eq. 1, Shapiro, Shepard, and
Wong3, 4 approached the problem from
the estimation theory viewpoint. Con-
sider the following abstract quantum esti-
mation problem. A single-mode input field
of annihilation operator alN and quantum
state [_,))IN undergoes an unknown, non-
random, c-number phase shift _, yielding
a single-mode output field of annihilation
operator

a = eiq'aiN, (30)

in state

I¢) = exp(i#phtlNalN) I¢)IN. (31)

By making an appropriate quantum mea-
surement on the 5 mode, and knowing the
input state [¢)IN, we are to estimate the
phase shift _. An interferometric phase
measurement can be embedded into this
scheme by placing appropriate constraints
on the allowable quantum measurement.
Optimizing a phase measurement within
this more restricted environment cannot
outperform the behavior obtained from
an unfettered measurement optimization.
Indeed, we should expect that joint op-
timization of the quantum measurement
and the input state will yield superior
phase estimation performance.

Without loss of generality, we can con-
fine the phase shift to a 27r-rad interval,
i.e., we can assume that -Tr < _ __%It. The
class of POM's we must optimize over, in
order to find the best phase measurement,

can be taken to be {dfi(¢) : -_r < ¢ _<
lr }, where

dl_(¢) = dfi(¢) t, (32)

and

/:i = dl](¢), (33)

on the state space of the output mode, 5.
The conditional probability density, given
• , for obtaining a phase value ¢ from this
POM is

p(¢ I -
de '

for -r < ¢, ¢ __%% (34)

where [¢) is the state of the 5-mode.

In classical estimation theory, the
maximum-likelihood (ML) estimate _ML

of an unknown, nonrandom, phase shift ¢,
based on a noisy phase-shift observation ¢,
of known PDF p( ¢ [ ¢ ), is the phase shift
which maximizes the likelihood of getting
the observed datum, i.e.,

¢_ML(q_) = arg max p(¢10). (35)
-_<O<n

Often, the ML phase estimate equals the
observed phase shift, because p( ¢ [ 0 ) has
its peak at 0 -- ¢, for -lr < ¢ _< 7r. Such
is the case for phase estimation in additive
white Gaussian noise. I t It then follows the

p(¢[ ¢), the peak likelihood, is a simple,
but meaningful, performance measure for
¢_ML. Indeed, its reciprocal,

1

6¢- p(¢l¢), (36)

is the PDF's width for the case of a uni-

form distribution; if the distribution is

Gaussian, then we have 6¢ = v/2-_A¢,
where A¢ is the root-mean-square (RMS)
error.

Our problem is one of quantum estima-
tion theory, namely, choosing the POM,

dII(¢), and the input state, [¢)lY, to opti-
mize our estimate of the phase shift _. For
a given POM and input state, Eq. 34 sup-
plies the PDF needed to perform classical
ML estimation. In this quantum setting,
however, the observed phase value ¢ is, by
presumption, our estimate of _. Thus, in
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order for this estimate to be one of maxi-
mum likelihood, we can restrict our atten-
tion to POM's satisfying

¢=arg max p(¢lO),
-.<0_<.

for -_r < 4) <_ lr, (37)

and optimize our estimate over dl_
and I¢)IN by maximizing the peak
likelihood--minimizing $¢---averaged over
all possible ¢ values. Here it is known
that, for the input state whose number
representation, Cn =(n[¢), is

_p,_ = J_bn]e_x", for n = 0, 1,2,..., (38)

6¢ is minimized by the following POM, z

d_(¢) = le'_,¢)(e ,¢ _,

for-r<¢<Tr, (39)

where

oo

le'¢,_> _ _ e(-¢+X-)ln ). (40)
n-----O

Moreover, the reciprocal peak-likelihood
that results when we use this optimum
POM to estimate (I) is easily shown to be

(41)

which is independent of the phases {X,_}.
In fact, p(¢ I _) is independent of the
{x,,}.

We can exploit the {X,_} independence
to good purposes by assuming, without
loss of generality, that the input state has
positive real Cn. Equation 40 then reduces
to

OQ

I_%¢) = left - _ e'"_l_),
n----'0

for -Tr < ¢ < lr, (42)

which is the number-ket expansion of
the SG phase operator's (infinite-energy)
eigenkets, viz.

_1_ ') = _1_),
for -lr < ¢ < lr. (43)

This says that the SG-POM is the quan-
tum measurement for ML phase estima-
tion in the general measurement configu-
ration when the input state has a posi-
tive real number representation. In other
words, the phase eigenkets of the SG oper-
ator generate the resolution of the identity,

if
"w

needed for ML quantum phase estimation
in this case. For an arbitrary input state,
the optimum POM from Eq. 39 is equiva-
lent to performing the unitary state trans-
formation

oo

0 _ Z ¢*X'ln><'_l, (45)
n=0

followed by the SG-POM.

To achieve the goal of jointly optimizing
phase-estimation performance over both
the measurement and the input state, it
only remains for us to minimize 6¢, from
Eq. 41, by appropriate choice of I¢)tN.
This problem has been addressed, a, 4 and
the state

A

l+n'

for n=0,1,2,...,M < co, (46)

where A is a normalization constant and

M is a truncation parameter, has been
shown to achieve

6¢ _ 1IN 2, (47)

in terms of its average photon number,
N = ((_ts,). This performance is far supe-
rior to the 6¢ ,-- 1/N reciprocal peak like-
lihood capability of optimized squeezed-
state interferometry. However, the phase
measurement PDF for the Eq. 46 state
is a heavy-tailed distribution, viz., its
RMS phase error, A¢, is essentially in-
dependent of N. Thus, the degree to
which this reciprocal peak likelihood ad-
vantage can be usefully exploited has
yet to be established, z2 In what follows,
therefore, we will concentrate on the SG-
POM, in that it constitutes the maximum-
likelihood quantum phase measurement
for all quantum states.
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4. SG POM

The Susskind-Glogower operator, 2, 13

e% = (aa+)-l/_a, (48)

affords a well-defined polar decomposition
of a,

h = _ ]e'_¢, (49)

in terms of energy (number) and phase op-
erators. Using the number-ket expansions
of N and a we have that

OO
A

e i* = y_ In)in + 1[, (50)
n----0

from which it follows that

A

e-i*
OC

A

= y]_In+l}(n I*e`*, (51)
n----0

and

[e%e--_'*]= 10>(01. (52)

In words, the SG phase operator is not
Hermit,an, and does not commute with its
adjoint. Thus, as was seen earlier for h it-
self, the quadrature components of the SG
operator,

A A

cos(C) - Re(e'¢), and (53)

sin(4)) - Im(ei¢), (54)

are noncommuting observables,

[co'_'-¢), sin'_)]--- 2]0)(0]. (55)

The SG-POM derives from the fact that

e i* has an overcomplete set of eigenkets,
cf. the Sect. 2 discussion of the h-POM.
By direct substitution of Eq. 50, we can
verify that

_1_ _*> = e'*l¢*),
for-vr<¢_<% (56)

where [ei*) has the number-ket represen-
tation given in Eq. 42. That these kets

resolve the identity is also easily shown,

/de le'*)(e'*l
_r

oo

ZZf_"°°= d¢ ei(n-"O*ln) (rn I
n=O m--'--O --'a"

= 2_ _ In)Cnl= 2_/. (57)
n--O

That they are not orthonormal can be
demonstrated from some simple Fourier
transform manipulations, 14

OO

n=O

+ _ sgn(n)e -`n(¢'-¢) + 1
n_--O0

= .6(¢' - ¢)

i (¢___) 1- _ cot + _ (58)

Here, 6(.) is the Dirac delta function, and

-1, n < O,sgn(_)- o, n=o, (59)
1, n>0,

is the signum function.

5. COMMUTING OBSERVABLES

Recall that a POM on 7-i which is not
an observable on that space can be repre-
sented as a collection of commuting ob-
servables on a larger, signal×apparatus
state space, 7-i ® 7-(A, with the apparatus
placed in some appropriate state. We now
develop such a representation for the SG-
POM. Aside from alleviating the qualms
of those who believe only in observables,
this representation may guide us to a real-
ization of the SG-POM--the commuting-
observables description of the h-POM is
intimately connected with its heterodyne-
detection realization.

Let hA be the annihilation operator of
an apparatus mode, whose state space,

112



"HA, is spanned by its number kets, { In)A :
n = 0, 1,2,... }. The non-Hermitian oper-
ator

+ (10)(01 (6o)
where

e--_bA -- _tA(_A_ttA) -1/2, (61)

is easily shown to commute with its ad-

joint. Here, Y" is an operator on the joint

state space _ ® 7_A, and ei4'A is the ap-
paratus mode's SG phase operator.

Because [l;',l_t] = 0, the quadrature

components of Y--denoted _'1 and Y2--
are commuting observables, which can be

measured simultaneously, i.e., l_ = YI +1_'2
can be measured in the usual sense. Solv-
ing for the eigenkets and eigenvalues of Y
we find that signalx apparatus number ket

IY) - [n)lm)A , for nm> 0, (62)

is a Y-eigenket with zero eigenvalue, and

1

IY) - v_ (I0)I0)A

+ _ (e'_*ln)lO)A +e-i'_ClO)ln)A ,
n=l

for -Tr < _b< r, (63)

is a Y-eigenket whose associated eigen-
value is e i¢. Collectively, these com-
prise a CON set from which we have

that measurement of l;', when the
signal×apparatus state is I¢)S×A E 7_ ®
7_A, yields a m/xed classical random vari-
able, Y, which takes on either the discrete
value O, or a value from the continuum
{ e i¢ : -lr < _b _< _r }. The former occurs
with discrete probability

oO O0

Pr(0 I I¢)S×A) = _ _ 1¢.._12; (64)
n--'--I rn -----1

the probability density for the latter is

1

p(¢ I I_)s×a) = _ I¢00+

}2 (e-'"*¢.o+ ,

for -_r < ¢ < _r, (65)

where _#nm - A(ml(nltbSxA) These two
are properly normalized in that for all
]_b)SxA we have that

Pr(O [ I¢)axA )

/:+ dckp(¢l I¢)S×A) = 1, (66)

as requiredby classical probability theory.

Now, the commuting-observables repre-
sentation of the SG-POM is at hand. Sup-

pose we measure Y when the apparatus
mode is unexcited, i.e., I_b)SxA = I_b)[0)A,

where I¢) E _ is an arbitrary signal-mode
state and I0)A is the apparatus mode's
vacuum state. Then the discrete value
zero is never obtained, and the PDF for
obtaining Y = e i¢ reduces to

P( ¢ I I¢)IO)A )

1 e_in¢_bn

2_" n=0

_-- ll(ei¢l_)12 ,

for -Tr < ¢ < 7r, (67)

realizing the SG-POM statistics for an ar-
bitrary state of the &mode.

The equivalence of the SG-POM to the
measurement with an unexcited appa-

ratus mode allows us to clarify some ba-
sic points. First, because the SG oper-
ator does not commute with its adjoint,
it is really the operator analog of the c-
number e i_ from the classical single-mode
field. In other words, there is no Hermi-

tian phase operator, ¢, on _/ such that

exp(i¢) = (hht)-l/2h. Restated in terms

of the quadratures of the SG operator_, this
means that cos(C) # cos(C), and sin(C)

sin(C). As a result, the classical trigono-
metric identity,

cos(C) 2 + sin(C)2 = 1,

for -Tr < ¢ < lr, (68)

does not apply to the quadratures of the
SG phase operator, e.g., because

c&_-¢)2+ si_-_¢)2= i I0)(012 ' (69)
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any I¢) with ¢0 # 0 gives

(¢1c_'C)21¢) + (¢18i_¢)21_) < 1. (70)

However, the outcome of the SG-POM /s

a phasor ei¢--the l;" measurement with
a vacuum-state apparatus mode yields a
complex-valued, continuous classical ran-

dom variable Y = ei_, where -lr < C _< lr.
Thus, we have that [y[2 = 1, w/th proba-
bility one.

The second point to note regarding the
SG-POM is the relation of its mean value
to those of the SG quadratures. Using

(71)

and

Y2 = (si_'¢)® I0)AA(OI)

- (10>(01® sin'(-C)A), (72)

and assuming an unexcited apparatus
mode, we find that

A(OI(¢I_'zI¢)IO)A = (¢[co_C)1¢>, (73)

and

A(OI<¢I_21_>IO>A= (¢lsi_C)l¢>, (74)

for all h-mode states, [¢). What this says
is that averages of the classical cos(C) and
sin(C) random variables obtained from the
SG-POM coincide with averages of the
SG phase operator's quadratures. To the
extent that the quadrature mean values
comprise the information of interest, we
can conclude that the SG-POM provides a
proper quantum measurement description
for simultaneous extraction of this infor-
mation from both quadratures.

6. UNCERTAINTY PRINCIPLE

Number-ket expansions of the quadra-

ture operators cos(C) and sin(C) lead to
the commutator

[_,si_)] = ico_(_%), (75)
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and the associated uncertainty principle

1 <co_-C)>l2 (76)(A/(/2)(Asin('C) 2) > _

Equation 76 is valid for arbitrary states,
but its utility, in this general form, is
somewhat limited. First, the minimum
uncertainty product is state dependent--
a consequence of Eq. 75 not being a c-
number commutator. Second, the princi-
ple does not directly address the variance

of a phase measurement--it is the sin(C)
operator whose variance appears.

It is common practice to use the lin-
earized form of Eq. 76,

1

ANAC -> 2' (77)

which applies for states meeting the high-
mean-field condition,

(_) _ i(a>l2 >>1. (78)

The linearized result, while useful, can be
abused. Number kets have zero number-

measurement uncertainty, and (5) = 0,

(cos(C)) = 0, hence the general result
leads to the correct number-ket limit,

(_2> A 2(Asin(¢)) _>0, (79)

whereas the linearized form is inapplica-
ble.

Although the SG-POM does not allevi-
ate the state-dependent nature of number-
phase uncertainty limits, it does lead to
an uncertainty principle which directly
addresses phase variance. Our route to
this principle--through Fourier theory--
has the following motivation. The
time-bandwidth uncertainty principle for
the continuous-time Fourier transform
(CTFT) 14 can be applied to the normal-
ized position and momentum wave func-
tions, ¢(al), and @(a2), because they sat-
isfy the Fourier transform relations 5

V(a2) =

/dal_ ¢(,_1)e-':"_°', (SO)
and

¢('_1) =

f__ _ O(a2)e i2aLa2. (81)
c_VTr



The result of this procedurecan be re-
duced to

1
(82)

which is the Heisenberg uncertainty
principle for the annihilation operator's
quadratures.

Because of Eq. 44, any state ]_h) has a
phase representation

v(e_*) - (_"*1'¢'),
for -Tr < ¢ < lr, (83)

such that

I¢) = i1¢)

1;- 27r d¢_(e_*)le_*). (84)

The phase representation of lib) is inti-
mately related to its number-ket represen-
tation, _bn - (n]_)--they are a Fourier
transform pair

OO

vCe'_) = _ _.e -_"_
n----0

and

(85)

1 d_ • (_'_)e _"_,(s6)
_n -- 2r

as can be seen from Eqs. 83 and 42. In

other words, _(e _¢) and en constitute
phase and number wave functions, which
are capable of representing arbitrary
states. The complementarity of the num-
ber operator measurement--whose proba-

bility distribution is Pr(/Q = n) = I_bnl2-
and the SG POM--whose probability den-
sity function is p(¢) : ]_P(ei¢)}2/2_r--then
follows from the Fourier relations, Eq. 85
and 86. Thus, to obtain a number-phase
uncertainty principle for the product of
the number-operator variance and the SG-
POM variance, we shall exploit this com-
plementarity by paralleling the standard
Fourier derivation of Fxt. 82.

With (A/_/2) denoting the number-

measurement variance and (A$2) the SG-
POM variance, when the field is in an ar-
bitrary state I_b), we have that

{A_2)(A¢ 2)

OO

= _(n- a)21¢.12
n=0

x (¢ $)_1_(e'_)12(8_)

_x (¢ 6)21,I,'(e_)12(88)

dqt'(ei*) 12x &b (89)

IRerr"LJ-,, 2_r (¢ - [h)_'(eiV)*
>_

× (90)

- 2_[p(_ I1¢))- 112. (9a)

In this development: _ and ¢ are the
mean values of the number and SG-POM
measurements, respectively, on the state

]_); _'(e i$) = _(ei$)eia_; the Schwarz
inequality has been used in Eq. 89; and
the integration necessary to obtain Eq. 91
follows from the SG-POM's PDF, p(¢ I

1¢))= I_(e'*)l:_/2_.

Unlike the usual number-phase uncer-
tainty principle, i.e., Eq. 76, our result
does not require any linearization before
it can be applied to phase variance. Equa-
tion 91 is still state dependent, but this is
unavoidable. When [_b)is a number state,
we have

1

P(¢II n))=2--;, for--.<¢<_, (92)

a uniform distribution, which is maxi-
mally random, but still has finite variance.
There is no contradiction with Eq. 91 in
this case, even though AN = 0 for a num-
ber ket; the uniform PDF causes the right
member of Eq. 91 to vanish. On the other
hand, when I¢) is a high-mean-field state,
we will have p(_r |l_p)) << 1, so that
Eq. 91 reproduces the standard linearized
formula, Eq. 77. Indeed, for any state
satisfying p(_r I I¢)) << 1, we have that
Eq. 77 holds. This makes the SG-POM
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derivation of Eq. 77 more robust than lin-
earization of Eq. 76.

7. Number-Ket Causality

The SG-POM underlies maximum-
likelihood quantum phase measurement
for all quantum states. Given the prob-
lerns associated with minimizing the SG-
POM's reciprocal peak-likelihood 6¢, by
choice of input state, 3, 4, 12 a different
state-selection criterion may be worth con-
sidering. In this vein, it is germane to ask
the following question. What SG-POM
phase PDF's can be realized by choice of
input state 1¢)? It turns out that linear
system theory has the answer.

The Susskind-Glogower probability op-
erator measurement on a state 1¢) results
in a classical random variable ¢ with prob-
ability density function

P(¢11¢)) = I_(e'¢)12
271" '

for -_r < ¢ < _r. (93)

Here, _(e _¢) is the phase representation
of the state |_b). According to Eq. 86, the
phase representation is the Fourier trans-
form of the number representation. The
latter is a one-sided, discrete-parameter
sequence that is the inverse Fourier trans-

form of @(e_¢), i.e.,

1/__ _¢,_ = _ dab _(eiC)e i'¢

(hie), for integer n_> 0,0, for integer n < 0. (94)

In system-theory parlance, the Fourier

pair ¢,_ _ _(e i_) is analogous to
that for a discrete-time waveform on

an unbounded interval and its periodic,
continuous-frequency Fourier transform,
I.e., the discrete-time Fourier transform

(DTFT). 14 More importantly, saying that
Cn is one-sided is equivalent to saying that
a discrete-time waveform is causal, viz. it
could be the impulse response of a causal,
linear time-invariant system. Determin-
ing what p(¢ [ [¢)) are possible from
Eq. 93 is then the same as determining
what [@(eiV)[ are Fourier-transform mag-
nitudes of one-sided {_bn}. To emphasize

the connection with causal waveforms, we
introduce the term number-ket causality
for the condition Eq. 94. This is a well-
studied problem in linear systems, so re-
suits are immediately available. 14, 15

From Eq. 93 and the Paley-Wiener
theorem 15 we have that p( ¢ [ [¢)) must
satisfy

_ de [ ln[p(¢ I 1¢) )]l < o_, (95)

for all number-ket causal _(eiV). From
this condition, it follows that no state can
confine the phase-measurement PDF to a
subinterval of (-_r,_r], e.g., the uniform
density,

1

v(¢l I¢>)=
for I¢1< 6¢/2 < (96)

is impossible. The Paley-Wiener condition
is both necessary and sufficient, i.e., if a
PDF obeys Eq. 95, then there /s a state
which gives this density through Eq. 93.
Indeed, there are an infinite number of
such states, because Eq. 93 only constrains
the magnitude of the phase representation.
One such state can be obtained explicitly
via the discrete-parameter Hilbert trans-
form. The procedure is as follows. For a
PDF obeying Eq. 95, set

= V/27rP(¢I 1¢)),

for -It < ¢ < 7r. (97)

Next, find the discrete-parameter Hilbert
trs/lsform, 14

arg[_(e'¢)] - 79f?_ _ ln[]_(e'¢')l]

x cot (_-),

for -n < ¢ _< % (98)

where 79 denotes Cauchy principal value.
Equations 97 and 98 then comprise the
magnitude and phase--the polar form--
of a properly-normalized phase represen-
tation q(e i¢) w/th the prescribed phase-
measurement statistics and a number-ket
causal inverse Fourier transform.
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The preceding phase representation
constructionfor a state with prescribed
SG-POMstatisticsisby nomeansunique.
Equation97 constrains IqJ(ei¢)l , but no re-

striction is placed on arg[_(ei_)]. Con-
sider a number-ket causal function, { h, :
n -- 0,1,2,... }, whose Fourier transform
has unity magnitude, viz.

H(e,¢,) -

oo

__, hne -in¢,
n----O

for < ¢ < (99)

obeys

IH(eiV)]=l, for-_r<O_<r. (100)

Such a function is known in digital-filter
theory as an all-pass filter; were { h, :
n = 0, 1, 2,... } the impulse response of a
discrete-time, linear, time-invariant filter,
the associated frequency response would
pass all frequencies with neither attenu-
ation nor gain. The prototypical exam-
ple of an all-pass filter is obtained--in the

z-transform domain--by balancing HI: /poles within the unit circle with

zeros outside the unit circle to achieve 14

K e-iS _ p_

k--I

for -lr < ¢ < r,

where IPkl < 1,

for k = 1,2,... K.(101)

Now, suppose we assemble the phase rep-
resentation

q/(ei¢) - qd(e_+)H(e'V),

for -_r < ¢ _< It, (102)

where qJ(e i¢) is constructed according
to Eqs. 97 and 98 for a desired phase-
measurement PDF, and H(e _4') is an all-
pass phase representation from Eq. 101.
The convolution-multiplication theorem of
Fourier analysis, plus the fact that con-
volving two causal functions produces a

causal function, 14 guarantees that qJ'(e i¢)
is a properly normalized, number-ket
causal phase representation; the all-pass
nature of H(e i_) implies that _'(e i¢) has
the desired SG-POM statistics. Because
this process holds for all K >_ 1 and for
all pole locations within the unit circle,

there is an uncountable infinity of states
which have the same SG-POM statistics.

Nevertheless, the state constructed via the
discrete-parameter Hilbert transform has
a unique advantage--it is the minimum
average photon-number state with the pre-
scribed phase-measurement PDF.

The proof of the minimum average
photon-number property follows almost
immediately from available linear-system
results. Let {_(e i¢) : -It < ¢ < It}
and { _, : n = 0, 1,2,... } be the phase
and number representations of the state
I¢), obtained via Eqs. 97, 98, and 94,
that realizes a particular phase PDF. Sim-
ilarly, let { _I"(e i'_) : -r < ¢ < r } and

{_" : n = 0,1,%...} be the phase and
number representations of any other state,
10'), with the same SG-POM statistics.

Then, we have that 14

M-I

Z (1¢.1 I¢'1:) ->0,
rim0

for M -- 1,2,3,... (103)

Physically, this says that, of all states with
the desired phase behavior, the Hilbert-
transform generated state concentrates its
number-ket content closest to the vacuum.
Because both I¢) and l_b')are normalized,
i.e., unit-length, states, Eq. 103 is equiva-
lent to

A M ----

oo

F_,(1 .1 I¢'[ <-o,
n=M

for M =0,1,2,... (104)

Proving the minimum average photon-
number property is now straightforward:

oo

= Z  (l¢ol I¢'1
n=0

oo

= _ AM < 0. (105)
M=I

Thus, Eqs. 97 and 98 provide the means
for choosing a state of minimum average
energy and prescribed phase-measurement
PDF.

117



8. PHASE COMMUNICATION

Sections 1-7 constitute an abridged ver-

sion of Shapiro and Shepard. 4 That pa-
per presents additional details regard-

ing the state that achieves 6¢ ,,, 1IN 2,
as well as substantial material on new

classes of quantum states--coherent phase
states, squeezed phase states, rational
phase states--that are closely associated
with the SG-POM. Furthermore, it proves
that the Pegg-Barnett Hermitian phase
operator 16' tv---which exists on a trun-
cated state space and provides phase_
measurement statistics on the full state

space through a limiting procedure--is
included within the SG-POM formalism,
i.e., these two schema produce identi-
cal phase measurement statistics for all
quantum states. Neither of these top-
ics will be considered herein. Instead,
we shall move away from the single-
mode case and develop new results for
two-mode quantum phase measurement.

Our objective will be to exploit the l?-
measurement---developed en route to the
commuting observables form of the SG-
POM--when the signal and apparatus
modes are quantum-mechanically corre-
lated and a phase-conjugate modulation is
applied to them.

Consider the phase-conjugate quantum
measurement setup shown in Fig. 1. This
is a phase-conjugate system because what-
ever c-number phase shift _ is applied to
the signal mode, leading to the annihila-
tion operator transformation

a_ N _ e'¢a_ N, (106)

the conjugate phase shift, -_ is applied to
the apparatus mode, viz.

---- N, (107)

cf. Eq. 30. If we take the signal and
apparatus modes to be the appropriate
linear polarizations, a transverse electro-
optic modulator can be used to induce

the necessary conjugate phase shifts) s
Phase-conjugate shifts also appear, pro-
totypically, in gravity-wave detecting in-
terferometers. In fact, there are funda-
mental advantages to operating a phase-
sensing interferometer in phase-conjugate
fashion, t° Our work does not depend ex-
plicitly on the means by which this mod-
ulation is accomplished. Its principal

motivation is to circumvent the Paley-
Wiener restriction that encumbers phase-
measurement PDF's for single-mode fields.
As we shall see, some startling new possi-
bilities arise with two modes.

The Paley-Wiener condition applies to a
single-mode phase PDF because this den-
sity is proportional to the squared magni-
tude of the Fourier transform, { _(e i¢) :
-tr < _b _< lr }, of a one-sided sequence,
{¢n : n = 0,1,2,...,}. We shall break
out of this limit, in the two-mode case,
through quantum correlation. On 7_s ®
7_A, the joint state space of the signal and
apparatus input modes, we can construct
number-product vacuum states of the form

I¢)m

where

OO

=
n=l

+ (108)

¢X)

1¢.12= 1. 0o9)
OO

The term number-product vacuum is ap-
propriate for such ]¢)IN because, when
the signal × apparatus state is of this class,
a measurement of the number-operator

product--Ns ® NA--yields outcome zero
with probability one. Thus, for [¢)IN
a number-product vacuum state, Eqs. 62
and 63 imply that measurement of

yields a classical phasor e i¢, with -lr <
¢ < r. Moreover, ¢ in this case has PDF

in terms of

(110)

O0

*(e'*) -- ¢.e
n oo

for-_r<¢<lr. (111)

Note that {¢,_ : [hi = 0,1,2,...,}

and (_(e iv) : -lr < ¢ < lr} are
not the number and phase representa-
tions, respectively, of any single-mode
field state. They are, however, the number
and phase representations, respectively,
for a two-mode, number-product vacuum
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state. The {tPn,_(e'*)} notation is con-
venientbecause,asshownby Eq. 111and
its inverse,

= [- a_ _(e'*)e'"*,
_" J__ 2_"

for Inl = o,1,2,..., (112)

these functions are a Fourier transform

pair. More importantly, this notation
makes clear the fact that number-ket
causality does not restrict the possible
two-mode phase PDF's. In particular,
there are number-product vacuum states
that satisfy

[_(e i¢) = 0, for I¢1> ¢c,
v

with ¢c < lr. (113)

i.e., two-mode phase PDF's can he con-
fined to subintervals of (-Tr, 7r], a situation
that is forbidden to the single-mode case,
cf. Eq. 96. This possibility is of great sig-
nificance for phase-based digital communi-
cation and phase-based precision measure-
ment, as we shall see.

To cast the Fig. 1 structure into a dig-
ital communication mold, let us assume
that transverse electro-optic modulation is
used to transmit a randomly-selected digit
k, satisfying 1 _< k < K, by using • = Ck,
where

(2k- 1)_ (114)
_ - -Tr + K

Our objective is to make a minimum er-
ror probability decision as to which ¢k
was sent, based on the result of the II%
measurement when the signal x apparatus
state is a number-product vacuum, char-

acterized by {tb,_, _P(e_)}.

Hall and Fuss have considered the

single-mode version of this K-ary dig-
ital communication problem 2°. They
optimized a single-mode state--in con-
junction with the SG-POM--to obtain
a phase-based quantum communication
setup whose error probability vs. average
photon number is significantly better than
that for optical heterodyne detection. Hall
and Fuss found a nonzero error probability
at finite average photon number, N, which
approached zero as N _ cx_. Surpris-
ingly, in our two-mode problem, zero error

probability can be achieved at finite root-
mean-square (RMS) photon number. 21

In order to achieve zero error probability
in phase-conjugate quantum communica-
tion, we need only use a number-product
vacuum state which enforces Eq. 96, with

¢c <__r/K. Under this condition, we have
that the observed phase, ¢, satisfies

Pr I¢- Okl < _ I_ = ok -- 1.

(115)

W; also have that I_k - _j[ > 27r/K, fork. So, for any observed ¢ in the inter-
val (-lr.Tr], we know that

Pr • = %ll¢-_'kl < _ -- o,

for all j # k. (116)

This means we can unambiguously deter-
mine which digit was sent by choosing the
index associated with the unique Oh-value
that is within r/Krad of the observed
phase. Via this procedure we decode k
from ¢ with zero probability of being in-
correct.

To make this technique for zero error
probability communication more explicit,
we shall introduce a specific input state
which has the desired property. The num-
ber representation we shall presume is

1

lPn = V/-_(1+2__/)

×

7r 1
2

for Inl = 0, 1,2,...,
and K = 2, 3,4,... (117)

The associated phase representation for
this state is easily computed to be

_(e _*) =

{
0,

In Fig. 2 we have plotted p( ¢ I ¢ = 0 ) vs.
¢ for this state when K = 4; we see that

for I¢1-<
(118)

for _, < I¢1<-_.
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thenonzerosupportof this PDF is the in-
terval (-7r/4, lr/4). In Fig. 3 we indicate
howthisPDF leadsto zeroerrorprobabil-
ity phase-conjugatecommunication;this
figure plots the four conditionalPDF's,
{p(¢[ ¢bk) : 1 < k _< 4}, which apply
when K = 4. For any observed C-value
we must have that p(¢ [ ¢b) > 0, other-
wise that &value could not have occurred.
Figure 3 shows that, for any given ¢,
there is only one possible Ok-value which
satisfies the nonzero PDF requirement--
zero error probability communication re-
sults from deciding that this value was the
transmitted phase.

The next question to address is the pho-
ton number statistics associated with our
phase-conjugate communication scheme.
For the general number-product vacuum
state we have that the total--signal plus
apparatus--photon number measurement
has the following probability distribution,

Pr(IQs+ iVA --n) =

1¢ 12,I¢_.I2 + I¢.I2,

For the particular state given by Eq. 117,
it is then a simple matter to show that

+ < + 2)
K

- 2 (120)

In other words, we can achieve zero error
probability K-ary phase-conjugate quan-
turn communication with an RMS total
photon number of K/2. Figure 4 is a plot
of Eq. 119 for the K = 4 case.

for n :0,
(119)

for n = 1, 2,3,...

Our main purpose in going to the two-
mode construct was to develop poten-
tial quantum-phase measurement schemes
that promise substantial benefits, i.e., ben-
efits that warrant the effort to bring
them to fruition. This motivation is

very much in line with the starting point
for squeezed-state research. 22 In this re-
gard, it is instructive to compare our
phase-based scheme for zero error prob-
ability quantum communication with a
more well-known approach based on num-
ber kets. For a single-mode field with
annihilation operator _, lossless transmis-
sion of one of the number kets { [k - 1) :
1 < k _< K } followed by ideal direct de-

tection, viz. the N : _t_ measurement,
also yields K-ary digital communication
without error. For k equally likely to be
any digit between 1 and K, the average-
energy efficiency of such a single-mode,
number-ket system is roughly the same
as that of our two-mode, phase-conjugate
system, i.e., both need slightly less than
K/2 photons on average. The number-
ket system has the advantage that its state
generator may be approximated via feed-
forward control using photon-twin beams,
and its measurement only requires a high
quantum-efficiency photon counter. Also,
the number-ket approach uses less band-
width; only one mode is needed. Alter-
natively, number-ket direct detection on
a two-mode field can be used for error-
free K-ary communication at significantly
less than K/2 photons on average. How-
ever, if we shift our attention from phase-
based communication, to phase-based pre-
cision measurements, the Fig. 1 arrange-
ment has a capability that number kets
cannot match--phase sensing with con-
trolled precision.

The preceding quantum communica-
tion result is, of course, idealized. We
have presumed a state generator--to pro-
duce a specific number-product vacuum
state--that as yet has no explicit realiza-
tion. Likewise, our scheme uses the l;'-

measurement; again, no explicit realiza-
tion is yet available. At least we can say
that electro-optic modulation will impress
the phase information on the input state,
once that state can be produced. On the
other hand, we have implicitly assumed
lossless transmission; inclusion of loss will
inevitably lead to nonzero error probabil-
ity.

Suppose that we use the Fig. 1 ar-
rangement for phase-conjugate precision
measurement. Specifically, let us use the
number-product vacuum state Eq. 117 in
conjunction with a phase-conjugate in-
terferometer (s_, e.g., Bondurant and

Shapiro t9) and the Y measurement. Now,
the phase shift ¢b takes on any value from
the continuum (-Tr, 7r]. Nevertheless, ex-
cept for 27r-modularity effects which come
into play when _ is within 7r/K of q-r,
the observed phase will lie within 7r/K rad
of the true phase with probability one.
Thus, using less than K/2 photons on av-
erage, we can guarantee a phase measure-
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mentwhichis within lr/Krad of theexact
value. In other words,unlike morecon-
ventionalschemes--whichonly ensurean
acceptableRMSphase-estimationerror--
our phase-conjugate interferometer pro-
vides exact phase determination to a pre-
scribed number of decimal places.
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Figure 1: Phase-conjugate quantum communication system.

Figure 2: Conditional phase-measurement PDF, given _ = O, for the state Eq. 118
when K = 4.
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Figure 3: ConditionM phase-measurement PDF's for the state F,q. 118 when K = 4.
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Figure 4: Signal-plus-apparatus number distribution/'or the state E,q. 117 when K = 4.
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